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with
We present fast numerical algorithms to solve the nonlinear Fok-

ker–Planck–Landau equation in 3D velocity space. The discretization f 5 f(x, v, t), f* 5 f(x, v*, t),
of the collision operator preserves the properties required by the

=v f 5 =v f(x, v, t), =v*
f 5 =v f(x, v*, t)physical nature of the Fokker–Planck–Landau equation, such as the

conservation of mass, momentum, and energy, the decay of the
entropy, and the fact that the steady states are Maxwellians. At the and F(v) is the 3 3 3 matrix:
end of this paper, we give numerical results illustrating the efficiency
of these fast algorithms in terms of accuracy and CPU time. Q 1997

Academic Press F(v) 5 uvuc12S(v), S(v) 5 I3 2
v ^ v

uvu2
. (1.3)

1. INTRODUCTION: THE FOKKER–PLANCK–LANDAU S(v) is the orthogonal projector onto the plane orthogonal
EQUATION to v; c is a real parameter which leads to the usual classifi-

cation in hard potentials (c . 0), Maxwellian molecules
The Fokker–Planck–Landau (FPL) equation is used for (c 5 0), or soft potentials (c , 0). This latter case involves

the description of binary collisions between charged parti- the Coulombian case itself (i.e., c 5 23). The present
cles, for which the interaction potential is the long-range numerical analysis is concerned with the physically inter-
Coulomb interaction. esting case (the Coulombian one) and the Maxwellian case

We restrict ourselves to a single-species plasma since (c 5 0) which enable us to compare the numerical results
the methods can easily be extended to the multispecies with exact solutions [6].
case (see Remark 3.3). The present algorithms are based As is well known in the physics literature and is mathe-
on the discretization of the FPL operator given in [5] the matically established by the work of Arsene’v and Buryac
main features of which are summaried in Section 2. [13] and Desvillettes [14], the FPL collision operator is

We denote by f(x, v, t) the distribution function, a solu- the limit of the Boltzmann operator for a sequence of a
tion of the scaled FPL equation scattering cross section which converges in a convenient

sense to a delta function at zero scattering-angle. In the
case of a Coulomb interaction, Degond and Lucquin-­f

­t
1 v ? =x f 5 Q( f, f ), (1.1) Desreux obtained the FPL collision operator as the lead-

ing term of the cutoff Boltzmann operator when the
parameter of the cutoff tends to zero [16]. Concerning thewhere Q( f, f ) is the FPL collision operator:
existence of solutions, Arsene’v and Peskov have estab-
lished the existence of weak-solutions for a short time in
the case of the spatially homogeneous FPL equationQ( f, f ) 5 =v ? SE

R3 F(v 2 v*)((=v f )f* 2 (=v*
f )f ) dv*D for the Coulomb potential.

The algebraic structure of the FPL operator is similar
(1.2) to that of the Boltzmann operator. This leads to well-

known physical properties such as the decay of the entropy,
the conservation of mass, momentum, and energy, and the1 This work was partially completed with CEA-CEL-V under Contract

W 003 772/216. characterization of the equilibrium states by Maxwellians.
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Indeed, these properties can easily be shown on the weak a3, where a is the sublattice mesh size. The second strategy
is an adaptation of multigrid methods to the FPL equation.form of the FPL operator,
It leads to a cost of the order of N ln N.

The outline of the paper is as follows: In Section 2, weE
R3 Q( f, f )(v)c(v) dv

review the basis of the conservative discretizations intro-
duced in [5]. Section 3 is devoted to a symmetrized version

5 2
1
2
E E

R33R3 ff*(=vc 2 =v*
c)TF(v 2 v*)(=v(ln f ) of the method [5] while Section 4 is concerned with the

fast algorithms that are themselves the sublattices and the
2 =v*

(ln f )) dv dv* (1.4) multigrid algorithms. In Section 5, we give numerical re-
sults.

for any smooth test function c. From this duality relation,
it is an easy matter to check that the only functions c such

2. A CLASS OF ENTROPY-DECREASING SCHEMESthat for all f, e Q( f, f )c dv 5 0, are linear combinations
of 1, v, and uvu2 (conservation of mass, momentum, and By a standard splitting algorithm, we may restrict our-
energy). selves to the space-homogeneous FPL equation

Furthermore, letting c 5 ln( f ) in (1.4) leads to the
entropty inequality (H-theorem):

­f
­t

5 Q( f, f ), f ut50 5 f0(v), (2.1)E
R3 Q( f, f )(v) ln( f(v)) dv # 0. (1.5)

where Q( f, f ) is given by (1.2) and f0 is the initial data.The equilibrium distribution functions, i.e., the functions
We introduce a regular discretization of R3, vi 5 iDv, i 5f such that Q( f, f ) 5 0 are Maxwellians,
(i1, i2, i3) [ Z3, and denote by f i an approximation of f(vi).
Let D be a finite-difference operator that approximates

MN,u,T (v) 5
N

(2fv2
th)3/2 exp S2uv 2 uu2

2v2
th

D , (1.6) the usual gradient operator = at least up to the first order,
and let D* be its formal adjoint. For any ‘‘test sequence,’’
c 5 (c i)i[Z3 , Dc is a sequence (Dc)i[Z3 of vectors of R3,

where N is the density of particles and vth is the thermal
velocity of the gas which depends on its temperature T

(Dc)i 5 ((D1c )i , (D2c )i , (D3c )i) [ R3, (2.2)through the relation: vth 5 ÏkT/m, where k is the Boltz-
mann constant and m is the mass of the particle.

In this paper, we are concerned with numerical approxi- where the components (Dsc )i , s 5 1, 2, 3, approximates
mations of the spatially homogeneous FPL equation in the the partial derivatives (­c/­xs)(vi). Such an operator is of
whole 3D velocity space. The starting point of this work the form
is the discretization of the FPL operator given in [5]. Alter-
nate methods are finite difference schemes that have been
investigated in [9] in the isotropic case and in [12, 8, 10] (Dc )i 5 O

k[Z3

akci1k , (2.3)
for the cylindrically symmetric problems. We also refer to
Larroche [17] for a mass conserving finite volume scheme.
Recently, conservative and entropic discretizations of axi- where the vectors ak 5 (ak,1 , ak,2 , ak,3) [ R3 satisfy
symmetric FPL operators are investigated in [18]. In [4, 5]
a numerical discretization in three-dimensional velocity O

k[Z3

ak 5 0, O
k[Z3

ak,skrDv 5 dsr , (2.4)space that satisfies discrete analogues of the above-men-
tioned properties is presented and is summarized in the
next section. A bibliography on previous works on such
methods can be found in [4, 5]. kr , being the rth component of k. Conditions (2.4) state

The discretization [4, 5] in three-dimensional velocity that D coincides with the exact gradient for constant or
space satisfies all properties required by the physical nature linear functions, or equivalently, that D is an approxima-
of the problem. Unfortunately a direct numerical imple- tion of = at least up to the first order. The formal adjoint
mentation of this method is very expensive. Its cost is of D* or D is given by
order N 2 when N is the number of the discrete velocity
points. Our first approach for reducing this cost is the use
of the sublattices method following the works by Buet (D*c )i 5 O

k[Z3

a*k ci1k (2.5)
[1–3] on the Boltzmann equation. This leads to a cost N2/
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with The operators D1 and D2 are clearly first order, while
Dc is second order. For these two cases, we have the follow-
ing results.a*k 5 a2k ;k [ Z3 . (2.6)

LEMMA 2.1 (Uncentered case). (i) The collisional in-
Note that D* is an approximation of 2=. variants (i.e., the sequences c i such that (2.11) holds) are

The approximation Q( f , f )i of Q( f, f )(vi) is defined for linear combinations of 1, vi , and uviu2.
any test sequence c by (ii) The equilibrium distribution functions are the dis-

crete Maxwellians.

O
i[Z3

Q( f , f )ici 5 2
1
2 O

(i, j)[Z33Z3

f i f j ((Dc )i 2 (Dc )j)T

(2.7)
(iii) Conservation of mass, momentum, and energy

hold.

F(vi 2 vj) ((D(ln f ))i 2 (D(ln f ))j) Dv3. LEMMA 2.2 (Centered case). (i) The collisional in-
variants are linear combinations of vi , uviu2, and of the follow-

The scheme defined by (2.7) decays the entropy: ing eight sequences x i*
, labelled by i* [ h0, 1j3, defined by

O
i[Z3

Q( f , f )i(ln( f )i # 0. (2.8)
(x i*

)i 5 H1 if i k ; ik
* (mod2) ;k [ h1, 2, 3j,

0 otherwise,
(2.14)

A collisional invariant is defined as a sequence c i such that
where ik denotes the kth component of i [ Z3.

O
i[Z3

Q( f , f )ic i 5 0 ;( f i)i[Z3 , (2.9) (ii) The discrete equilibrium functions are exponentials
of the above described collisional invariants.

(iii) Conservation of mass, momentum, and energy
or equivalently from (2.7) such that hold. But seven other independent spurious conservation

laws hold associated with (x i*
)i*[h0,1j3 ,

(Dc )i 2 (Dc )j [ Ker(F(vi 2 vj)) ;i, j [ Z3 . (2.10)

O
i[Z3

Q( f , f )i(x i*
)i 5 0 ;i* [ h0, 1j3. (2.15)

A discrete equilibrium distribution function (i.e., a func-
tion f i such that Q( f , f )i 5 0) is clearly, from (2.7), such
that (ln f )i is a collisional invariant (i.e., satisfies (2.10)). (Note that 1 5 Oi*[h0,1j3

x i*
, so that conservation of mass

It is proved in [5] that (2.10) is equivalent to the existence can be deduced from the eight conservation laws (2.15).)
of a real number l, independent of i and j: The use of the centered discrete difference operator

leads to nonphysical equilibrium states (i.e., non-Maxwel-
(Dc )i 2 (Dc )j 5 l(i 2 j) Dv ;i, j [ Z3. (2.11) lian functions). On the other hand, the use of the uncen-

tered discrete operator destroys the symmetry of the prob-
However, nothing more can be said unless specifying the lem and does not give satisfactory results. To overcome
discrete differential operator D. This is shown on two sim- this problem, we introduce a symmetrization of the discrete
plest cases (we refer to [5] for details). FPL operator, based on the averaging of the uncentered

discretizations in the various directions of coordinates.Case 1, the right (resp. left) uncentered operator D 5
D1 (resp D 5 D2) defined by

3. SYMMETRIZATION OF THE UNCENTERED
DISCRETE DIFFERENTIATION

(Ds
1c )i 5

c i1es
2 c i

Dv
, s 5 1, 2, 3,

(2.12)
By combing ‘‘upwind’’ and ‘‘downwind’’ uncentered dif-

ferences in the various direction of coordinates, we define
eight uncentered difference operators denoted by D« , forSresp. (Ds

2c )i 5
c i 2 c i2es

Dv
, s 5 1, 2, 3D,

« 5 («1 , «2 , «3) [ h21, 1j3 as

where es is the sth vector of the canonical basis of R3.

Case 2, the centered operator D 5 Dc defined by
(D« f )i 5

1
Dv 1

«1( fi1«1e1
2 fi)

«2( fi1«2e2
2 fi)

«3( fi1«3e3
2 fi)

2 . (3.1)

(Ds
cc )i 5

c i1es
2 c i2es

2Dv
, s 5 1, 2, 3. (2.13)
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At variance, there is only one centered operator denoted the first contribution (see Lemma 2.2)). The numerical
implementation of Qus in the form (3.7) is clearly lessby Dc:
expensive than the one in the form (3.3).

On the other hand, it is possible to reduce the computa-
tional cost of the viscosity term (3.5) by replacing the sum
over (i, j) [ Z3 3 Z3 in (3.5) by a sum over (i, j) [ Z3 3(Dc f )i 5

1
2Dv 1

fi1e1
2 fi2e1

fi1e2
2 fi2e2

fi1e3
2 fi2e3

2 . (3.2)
Z3 with ui 2 ju # Ï2. In the following proposition we show
that this reduction does not affect the conservation proper-
ties and does not generate any spurious collisional invari-
ant. We denote by Qusr the FPL operator using this reduc-

We denote by Q« and Qc the corresponding discretized tion procedure, i.e.,
FPL operator defined by the duality relation (2.7). In this
section we introduce the symmetrization of the FPL opera-
tor Qus obtained by taking the average of the operators O

i[Z3

Qusr
i ci 5 O

i[Z3

Qc
i ci 1

Dv2

4 O
i[Z3

QDr
i ci (3.8)

Q« over all « [ h21, 1j3:

withQus 5
1
8 O

«[h21,1j3
Q«. (3.3)

O
i[Z3

QDr
i ci 5 2

1
2 O

i, j[Z33Z3

ui2j u#Ï·2

f i f j 3 ((Dc)i 2 (Dc)j)T FD(vi 2 vj)
We also introduce a new difference operator D as

((D(ln f ))i 2 (D(ln f ))j) Dv3

(3.9)

(Df )i 5
1

(Dv)2 1
fi1e1

1 fi2e1
2 2fi

fi1e2
1 fi2e2

2 2fi

fi1e3
1 fi2e3

2 2fi

2 (3.4) and we have

PROPOSITION 3.2. For the discrete FPL operator defined
by formulas (3.8) and (3.9), the collisional invariants are
of the form

and denote by QD the operator defined by the duality re-
lation

ci 5 Auviu2 1 kB, vil 1 C. (3.10)

O
i[Z3

QD
i ci 5 2

1
2 O

(i, j)[Z33Z3

f i f j ((Dc )i 2 (Dc )j)TFD(vi 2 vj) Proof. By Lemma 2.2 the collisional invariants for the
centered difference operator have the form

(D(ln f ))i 2 (D(ln f ))j)Dv3,

(3.5)

ci 5 Auviu2 1 kB, vil 1 O
k[h0,1j3

Ck(xk)i , (3.11)
where we have set

FD(v) 5 uvucDiag(uvu2 2 v2
1 , uvu2 2 v2

2 , uvu2 2 v2
3) (3.6) where Ck 5 Ck1k2k3

are arbitrary coefficients and xk is de-
fined in Lemma 2.2. But the viscosity term (3.9) gives the
following additional relations:and Diag(x, y, z) denotes the diagonal matrix whose diago-

nal elements are x, y, and z.
With these notations, a simple calculation yields the (Dc)i 2 (Dc)j [ Ker FD(i 2 j) (3.12)

following result.

for all i, j such that ui 2 ju # Ï2 which impliesPROPOSITION 3.1. We have

[ui 2 ju2 2 (ik 2 jk)2][Ci1ek
2 Cj1ek

2 (Ci 2 Cj)] 5 0 (3.13)O
i[Z3

Qus
i ci 5 O

i[Z3

Qc
i ci 1

Dv2

4 O
i[Z3

QD
i ci . (3.7)

for all k [ h1, 2, 3j and for all i, j such that ui 2 ju # Ï2.
The notation i denotes the class of i modulo 2, that is theThe operator Qus is the sum of two contributions: the

first one is the centered operator Qc and the second one vector whose components are the classes of i’s components
modulo 2 (i [ h0, 1j3). To simplify we suppose that i 5is a sort of viscosity term which serves to eliminate all

spurious collisional invariants that may be generated by (0, 0, 0) and denote by (e1 , e2 , e3) the canonical basis of R3.
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For each fixed k [ h1, 2, 3j we choose l [ h1, 2, 3j such and the associated finite difference operators as:
that k ? l and take j 5 el , we get by (3.13)

(Dac)i 5
1

Dva
O

k[Z3

akci1k . (3.20)
Cek

2 Cel1ek
2 (C000 2 Cel

) 5 0 (3.14)

We also consider the operators Da,« and Da,c defined by
for all k ? l. Now, taking j 5 ek 1 el with k ? l we obtain (3.1) and (3.2) with the mesh size Dva . With these notations,

it is an easy matter to see that we have
Cek

2 Cel
2 (C000 2 Cek1el

) 5 0. (3.15) PROPOSITION 3.4. For the centered difference operators
Da,c , we have the conservation of mass, momentum, and
energy. However, for the uncentered difference operatorsCombining these last two relations, we get Cek

5 C000 for
Da,« the conservation of energy holds if and only ifall k [ h1, 2, 3j. Inserting this in (3.15) we have also
Dva 5 Dvb .Cek1el

5 C000 for all k, l [ h1, 2, 3j.
Finally, by writing (3.13) for k 5 1 and j 5 e2 1 e3 , we

4. FAST ALGORITHMSobtain C111 5 C000 which concludes the proof thanks to
relation 1 5 ok[h0,1j3 xk .

4.1. Deterministic Schemes: Sublattices Methods
Remark 3.3. Extension to the multispecies Fokker– The computational complexity is of order N 2 which is

Planck equation. We extend the above method to two much too big for a practical use of the discrete FPL opera-
species of particles denoted by indces a and b, respectively. tors. To reduce this cost, a first strategy is to use sublattices
The distribution functions of these two species satisfy the as it was done for the Boltzmann collision operator [1].
following system of homogeneous FPL equations: We present a brief description of the method and show

how to preserve the physical properties. We also show
how to design the algorithm in order to avoid spurious­fa

­t
5 Qa(va),

­fb

­t
5 Qb(vb), (3.16) collisional invariants. In this section we deal with the un-

centered discrete difference operator although the follow-
ing results remain valid if we use the symmetrized operator

where we have set (with a 5 a or b and b 5 b or a, respec- given by (3.3).
tively): For a [ Z, a $ 2, we define the discrete operator Qi[a]

by the duality relation

Qa(va) 5
1

ma
=va

? E
R3 F(va 2 vb)

(3.17) O
i[Z3

Qi[a]ci 5 2
1
2 O

i;j [a]
f i f j

(4.1)S 1
ma

=va
fa fb 2

1
mb

=vb
fb faD dvb .

((Dc)i 2 (Dc)j)T F(vi 2 vj)((D(ln f ))i 2 (D(ln f ))j) Dv3,

where the definition of i ; j [a] means that i 2 j is aLet ca 5 ca(va) be two test functions (for a 5 a and b).
multiple of a. The following result makes the collisionalWe have
invariants for this discretization precise.

PROPOSITION 4.1. Let A and B real constants, and letE
R3 Qa(va)ca dva 1 E

R3 Qb(vb)cb dvb Ci only depending on the class of i modulo a (i.e., Ci 5
Ci with i the class of i modulo a); then

5 2 E
R33R3 fa fb 3 S 1

ma
=aca 2

1
mb

=bcbDT

(3.18)

c i 5 Auviu2 1 kB, vil 1 Ci

F(va 2 vb) S 1
ma

=a ln fa 2
1

mb
=b ln fbD.

are collisional invariants generated by the discrete operator
Qi[a] defined by (4.1).

We consider different mesh sizes for the two species and Proof. c is a collisional invariant for the operator Qi[a]
define two regular discretizations of R3 according to: if and only if

va
i 5 iDva , vb

i 5 iDvb for i [ Z3, (3.19) (Dc)i 2 (Dc)j [ Ker F(i 2 j) (4.2)
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for all i, j such that i ; j[a]. Replacing c i successively by which gives
uviu2, vi , and Ci , we easily obtain the desired result.

ai1ak 5 ai ;i, k [ Z3
Now we shall modify this method in order to preserve

the Maxwellians as unique possible equilibrium states: Let
a and b two mutually prime integers, i.e., such that a ` and this is also true for b: ai1bk 5 ai ;i, k [ Z3.
b 5 1, where a ` b is the greatest common divisor of a Now let i and j two arbitrary elements of Z3, since a `
and b. We consider the two corresponding operators Qi[a] b 5 1, the Bezout identity gives the existence of two triples
and Qi[b] defined by the duality formula (4.1). q, r [ Z3 such that

We set

i 2 j 5 aq 1 br. (4.8)
Qi[a, b] 5 As(Qi[a] 1 Qi[b]) for all i [ Z3. (4.3)

Then we have
We have the following result.

PROPOSITION 4.2. If we use the uncentered difference aj 5 aj1aq 5 aj1aq1br 5 ai

operator, then the collisional invariants of the discrete opera-
tor given by formula (4.3) are the linear combinations of and, finally, we deduce that ai does not depend on i and
mass, momentum, and energy. then

Proof. A collisional invariant of the discrete operator
Qi[a, b] must be a collisional invariant for both Qi[a] and (Dc)i 2 (Dc)j 5 a(i 2 j) (4.9)
Qi[b]. Therefore, if c is a collisional invariant generated
by Qi[a, b] then for all i, j [ Z3. In the case of the uncentered difference

operator D, this classically implies (see [5]) that ci is a
(Dc)i 2 (Dc)j [ Ker F(i 2 j) (4.4) linear combination of the mass, the momentum, and the

energy, and concludes the proof of Proposition 4.2.
for all i, j such that i ; j[a] or i ; j[b].

Therefore, for i and k [ Z3, we have 4.2. Random Methods: Multigrid Algorithms

In this section we compute the discrete FPL collision(Dc)i1ak 2 (Dc)i 5 l(i, k)ak (4.5)
operator by using a multigrid method with numerical inte-

(Dc)i1bk 2 (Dc)i 5 e(i, k)bk (4.6) gration of Monte-Carlo type. The computational complex-
ity of this simulation is of order N ln N, where N is the
number of discrete velocity points. This approach takes itswith l(i, k), e(i, k) [ R.
inspiration from the method of Greengard and RokhlinThus, from (4.5), we can write two relations,
[19]. In a subsequent work [7], a new method goes further
in the adaptation of [19] to the FPL equation.(Dc)i1ak 2 (Dc)i1al 5 l(i 1 la, k 2 l)a(k 2 l)

(Dc)i1ak 2 (Dc)i1al 5 l(i, k)ak 2 l(i, l)al, 4.2.1. Description of the Method

To simplify the notations, we setfor all i, k, l [ Z3 and easily obtain: l(i, k) 5 l(i, l) for
all i, k, l [ Z3, which means that l(i, k) is independent of

H(v, w) 5 2As f(v)f(w)[=vc 2 =wc]T

(4.10)
k, and the same is true for e(i, k). Let l(i, k) 5 li , and
e(i, k) 5 ei . Now by writing

F(v 2 w)[=v(ln f ) 2 =w(ln f )].

(Dc)i1abk 2 (Dc)i 5 liabk 5 eiabk ;i, k [ Z3, (4.7)
We assume that the discrete velocity domain is a cube C0

of length 1 which contains N 5 (2n)3 5 8n discrete points
we obtain li 5 ei 5 ai for all i [ Z3. On the other hand,

lying on a regular cubic lattice. The algorithm is the fol-
we have

lowing:

2aaik 5 (Dc)i12ak 2 (Dc)i • Step 0. We just write the FPL operator in a weak form:

5 (Dc)i12ak 2 (Dc)i1ak 1 (Dc)i1ak 2 (Dc)i E
C0

Q( f, f )(v)c(v) dv 5 E
C03C0

H(v, w) dvdw. (4.11)
5 aai1akk 1 aaik
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• Step 1. We split the cube C0 (the parent) into 8 regular neighbours of the parent of Cr
k and is not a nearest

neighbour of Cr
k .boxes Cr

1 (the children), r [ h0, 1j3. Each box Cr
1 is of

length As and its center is
The notation ws means ‘‘well separated’’ and nws means

‘‘not well separated,’’ i.e., neighbours.
Or

1 5 S 1
22 1

r1

2
,

1
22 1

r2

2
,

1
22 1

r3

2D (4.12) To simplify the algorithm we only describe the method
for level 2:

with r 5 (r1 , r2 , r3) [ h0, 1j3. we set I1 5 h0, 1j3. Again, At level 2, we split each box Cr
1 of level 1 into 8 boxes

we do not do any numerical approximation; we only write and write

E
C0

Q( f, f )(v)c(v) dv 5 O
(r,r9)[I2

1

E
Cr

13Cr9
1

H(v, w) dvdw. E
C0

Q( f, f )(v)c(v) dv 5 O
(r,r9)[I2

2
r ws r9

E
Cr

23Cr9
2

H(v, w) dvdw

(4.16)
(4.13)

1 O
(r,r9)[I2

2
r nws r9

E
Cr

23Cr9
2

H(v, w) dvdw.
• Step k (k $ 2). We denote by Cr

k the boxes of level k
obtained after splitting each of those of level k 2 1 (the
parents) into eight regular boxes (the children). More pre-

If Cr
2 is ‘‘well separated’’ from Cr9

2 , then we replace thecisely Cr
k is the box of length 1/2k and whose center is

corresponding integral by a numerical approximation of
Monte-Carlo type. In the second case we do not do any
numerical approximation and pass to level 3. We repeatOr

k 5 S 1
2k11 1

r1

2k ,
1

2k11 1
r2

2k ,
1

2k11 1
r3

2k
D (4.14)

this process until step n, where we perform a Monte-Carlo
approximation not only for the ‘‘well-separated’’ boxes but

with r 5 (r1 , r2 , r3) [ Ik 5 h0, 1, ..., 2k 2 1j3. If CR
k21 is the also for the nearest neighbours.

father of Cr
k then it is easy to see that

4.2.2. Numerical Integration of Monte-Carlo Type

OR
k21 5 S 1

2k 1
R1

2k21 ,
1
2k 1

R2

2k21 ,
1
2k 1

R3

2k21D We assume that we are at a fixed level k and we want
to approximate the expression

with E
Cr

k3Cr9
k

H(v, w) dvdw (4.17)

Ri 5
ri

2
if ri is even

(4.15) when Cr
k and Cr9

k are ‘‘well separated.’’
A direct approximation requires 82(n2k) evaluations. But

Ri 5
ri 2 1

2
if ri is odd. this leads to an amount of work proportional to N 2. There-

fore, in order to have a cost of order N ln N we must use
only nk 5 8n2k evaluations to approximate (4.17) such thatRemark 4.3. To obtain the children of Cr

k , we add to
after nk iterations all the pairs (i, j) [ Cr

k 3 Cr9
k werethe center Or

k the quantities
chosen. One way is the following.

Let h1, 2, ..., nkj be a numbering of the nk elements of1
2k11 («1 , «2 , «3), Cr

k or Cr9
k and let f be a randomly chosen permutation of

h1, 2, ..., nkj. In the first time step we approximate (5.21)
by a Monte Carlo quadrature formula using pairs (l, f(l))where
[ Cr

k 3 Cr9
k . In the second time step we use pairs (r, f2(r)),

etc. until covering the maximum number of possible pairs(«1 , «2 , «3) [ h21, 1j3.
(l, l9) [ Cr

k 3 Cr9
k , i.e., until the number of iterations reaches

the order of f in the group Snk
of permutations of the set

Remark 4.4. To obtain the nearest neighbours of Cr
k , h1, 2, ..., nkj. Therefore, for all the pairs (l, l9) [ Cr

k 3we add to the center the quantities (1/2k) («1 , «2 , «3), where
Cr9

k to be chosen, the permutation f must be of order nk .(«1 , «2 , «3) [ h21, 0, 1j3 (27 neighbours).
If such a choice of f is possible then after nk iterations in
time the integral will be well approximated since all pairsThe box Cr

k will be said to be ‘‘well separated’’ from
Cr9

k if and only if Cr9
k is a child of one of the nearest (l, l9) [ Cr

k 3 Cr9
k will have been chosen. For the next nk
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time steps, we change randomly the permutation f and Finally, we make precise that all the following numerical
tests are performed within the uncentered and symme-repeat the same process.

Finally, when Cr
k and Cr9

k are ‘‘well separated,’’ the trized FPL operator. In these tests, we consider the evolu-
tion in time of the following quantities:Monte-Carlo approximation of (4.17) is given by

• Discrete kinetic entropy,
Hr,r9

k 5
def

8n2k(Dv)6 O
(i,f(i))[Cr

k3Cr9
k

H(vi , vf(i)). (4.18)

Hd(t) 5 O
i[Z3

fi(t) log fi(t) Dv3. (5.1)

This way of choosing random collision pairs (vi , vf(i)) was
first suggested by Babovsky in [20] as an improvement of • Discrete moment of order 4,
Nanbu’s scheme of the Boltzmann equation. In this work,
we can also find a similar (Monte Carlo) quadrature for-

M (4)
d (t) 5 O

i[Z3

(uiuDv)4fi(t)Dv3. (5.2)mula which is proved to be consistent with the correspond-
ing integral. This method can be applied to prove the con-
sistency with (4.18) of the integral:

• Discrete temperatures,

E
Cr

k3Cr9
k

H(v, w) dv dw.
Tx(t) 5 O

i[Z3

(i1Dv 2 u1
0)2fi(t)Dv3 (5.3)

However, the use of the multigrid methodology intro-
Ty(t) 5 O

i[Z3

(i2Dv 2 u2
0)2fi(t)Dv3 (5.4)duces additional consistency errors that have not been

analysed precisely. The method is probably more precise
in the Coulomb case, where the collision cross section Tz(t) 5 O

i[Z3

(i3Dv 2 u3
0)2fi(t)Dv3 (5.5)

decays as the relative velocity increases than for other
interactions forces with nondecreasing cross sections. Mor-
ever, rigorous proofs of those statements are beyond the T(t) 5

1
3

[Tx(t) 1 Ty(t) 1 Tz(t)], (5.6)
scope of this paper and will be the subject of future works.

Finally, we point out that the conservation properties
where i 5 (i1, i2, i3), u0 5 (u1

0 , u2
0 , u3

0) 5 (1/N ) e
R3 vf(v)and the decrease of the entropy are still satisfied. Indeed

dv, and N 5 e
R3 f(v) dv.the expression (4.10) of H(v, w) vanishes when we replace

c by 1, vi , or v2
i and becomes negative when we replace c • Quadratic error: if f exact is an exact solution in the

by ln f. On the other hand, a rigorous treatment of spurious Maxwellian case [6], and f is the approximate solution
collisional invariants is not clear and is not addressed here. by sublattices or multigrids schemes corresponding to the
It seems, however, that the multigrid method does not initial data f0(v) 5 f exact(0, v), then we define the quadratic
generate spurious collisional invariants (when we use the error as
uncentered or the symmetrized uncentered difference op-
erators), and the numerical tests confirm clearly this as-

EQ(t) 5 O
i[Z3

u fi(t) 2 f exact
i (t)u2(Dv)3. (5.7)sertion.

5. NUMERICAL RESULTS
The numerical tests are performed with: vmax 5 6, n 5

4, or 5 (i.e., N 5 163, or 323). The two methods (sublatticesWe present numerical tests of the above two methods
and multigrid) are tested on two different types of initial(sublattices and multigrids) on two cases: the Maxwellian
datas:case (c 5 0) and the Coulombian case (c 5 23). In all

these tests, we use a regular grid of size Dv in the velocity
Test 1. The Maxwellian case: the initial data is chosenspace which contains N 5 (2n)3 points and n takes the

in the class of known exact isotropic solutions [6]. Ourvalue n 5 4 (grid 16 3 16 3 16) or the value n 5 5 (grid
numerical results are compared with the simplest element32 3 32 3 32). The length of this grid is denoted by vmax
of this class of exact solutions,and the number of points of one edge is 2n. The discrete

velocity domain is then the set of points vi 5 (i1Dv, i2Dv,
i3Dv) with i 5 (i1, i2, i3) (0 # ik # 2n 2 1, k 5 1, 2, 3). We f exact(v, t) 5 MN,v0,T(v)(1 1 c2Q2[(v 2 v0)/vth] exp(28N t)),
also consider the center of the domain v0 5 (vmax/2, vmax/
2, vmax/2). If f is the distribution function, we set: fi 5 f(vi). (5.8)
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FIG. 1. Kinetic entropy for Maxwellian case.

where: f0(v) 5 As (MN,v01,T(v) 1 MN,v02,T(v)), (5.10)

where MN,u,T is given by (1.6), andQ2(v) 5
1

120
(v4 2 10v2 1 15) (5.9)

v01 5 (2., 3., 3.), v02 5 (4., 3., 3.).
is a Sonine polynomial. We recall that v0 5 (3., 3., 3.) is
the center of the domain and choose vth 5 0.6, N 5 5.

We finally choose vth 5 0.45, N 5 5.We note that, in this case, the temperatures in various
The evolutions in time of the entropy and of thedirections Tx , Ty , and Tz are equal because of the isotropy

temperatures are now compared with the results of exactof the solution and of the isotropy properties of the FPL
schemes 2.7 which have a quadratic complexity. Theoperator. The evolutions of the entropy and the order 4
curves of Figs. 2, 5 show that the multigrid algorithmmoment are compared with their exact evolution in time
is a little more accurate than the sublattices method.(Figs. 1 and 3). The evolution of the entropy induced by
The curves of Fig. 5 give the relaxations in time of thethe multigrid scheme is a little more accurate than the one
temperatures in various directions of velocity coordinatesinduced by the sublattice algorithm. To reach the same
to their final values and confirm the accuracy of theseaccuracy, it is necessary to decrease the sublattice size, and
algorithms. These temperatures are constant if we choosethen to increase the computational cost. On the other hand,
an isotropic initial distribution (as in Test 1 for theoscillations arise in the time evolution of the moment of
Maxwellian case). In the result given by Fig. 4, however,order 4 for the multigrid scheme, while the evolution is
we again observe oscillations of the moment of order 4smooth for the sublattices algorithm. Notice, however, that
with the multigrid algorithm, while the sublattices methodthe relative variations of the moment of order 4 and, thus,
gives smoother results. As in Test 1, we note that theseof these oscillations, are small. The quadratic error be-
oscillations have small relative values.tween the distribution function obtained by the numerical

schemes and the exact solution of the FPL equation is The curves given in Fig. 7 illustrate the fact that two
plotted (Fig. 6) and shows the efficiency of the random- sublattice sizes are necessary to avoid non-Maxwellian
multigrid method in terms of accuracy. steady states as it is shown in Proposition 4.2. Indeed, a

simple use of only one sublattice size (a 5 5 for 32 3Test 2. The Coulombian case: the initial data is now
chosen to be bi-Maxwellian i.e., a sum of two Maxwel- 32 3 32 grid) leads to a final distribution function which

is far from the realistic equilibrium state. This is shownlian functions,
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FIG. 2. Kinetic entropy for Coulombian case.

FIG. 3. Moment of order 4 for Maxwellian case.

by plotting the relaxation of the value of the distribution These simulations were carried on a DEC AlphaServer
2100 4/275 OSF/1 monoprocessor, and the CPU times perfunction at the center of the grid (Fig. 7). A difference

between the two relaxations given by the use of one (a 5 iteration in time for the two algorithms are listed on the
following table (in units of seconds (s) or minutes (min)):5) or two (a 5 5, b 5 6) sublattice sizes is observed (Fig. 7).
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FIG. 4. Moment of order 4 for Coulombian case.

FIG. 5. Températures Tx, Ty, and T for Coulombian case.

16 3 16 3 16 32 3 32 3 32 6. CONCLUSIONS

Sublattice sizes 2,3 3,4 5,6 7,8
We have implemented two methods to decrease the com-Sublattices 3 s 1.3 s 30 s 14 s

putational time required for the evaluation of the discreteMultigrids 0.4 s 8 s
Quadratic schemes 53 s 60 min FPL operator 2.7. The first one is a sublattices method,
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FIG. 6. Quadratic error for Maxwellian case.

FIG. 7. Coulombian case: Relaxations and Equilibrium states using one and two sublattice sizes. The numerical equilibrium state obtained by
using two sublattices sizes coincides with the realistic (the Maxwellian) final distribution.
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